
Possible Logical Foundations for Physical Sciences

Paul C Gilmore

September 08

Abstract

There are several motivations for this paper, the most specultive being
the one suggested by its title. The thesis of logicism that Frege, Russell
and others have advanced is that the foundations of mathematical truth
lies in an understanding of the logical truths that underly it. Since theo-
retical sciences have become more and more dependent on mathematical
exposition, it is natural to ask if an understanding of modern physics is
not also dependent on an understanding of logical truths. A hint of this
belief can be found in a recent book by Smolin. This paper speculates on
how the connection might be made more evident.

But there are other more solidly founded motivations. The author
has advanced the thesis over the past decade that the source of the log-
ical paradoxes lie in a confusion of use and mention. Logics have been
described that make this distinction while providing a consistent purely
logical development of recursion theory and theories of natural and real
numbers. In this paper novel higher order classical and intuitionist logics
CSL and HSL are defined that make no use of quantification variables but
only abstraction variables for use with the λ-abstraction operator. They
provide a further substantiation of the the thesis of logicism.

1 Introduction

The origins of the logics CSL, Classical Symbolic Logic, and HSL, Heyting
Symbolic Logic, are in a classical second order logic NaDSyl, Natural Deduction
based Symbolic Logic, [6, 7, 8] with two novel features. To permit an unlimited
use of the λ-abstraction operator, abstaction variables were introduced, in ad-
dition to the usual first and second order variables. Further, second order terms
without free second order variables were admitted as first order terms to sub-
stantiate the thesis that the source of the paradoxes of set theory lies in an abuse
of use and mention, a thesis advanced earlier by Wilfred Sellars in [17] and [18].
In order not to unnecessarily restrict the use of the λ-abstraction operator, to
be a sentence M of the logic was identified with the derivability of the sequent
M � M with the sequent assumed derivable when M is atomic. Consequently
all sentences of NaDSyL could be ultimately reduced to atomic. Applications of
the logic in sciences based on physical observations require that the atomic sen-

1

tences be thought of as decidable by observation; thus the sentences of NaDsyL
can be thought of as potentially grounded in a physical observations.

CSL provides both a simplification and a generalization of NaDSyL. The
simplification removes all quantification variables and replaces them with ab-
straction variables only. The generalization results from extending the logic to
a complete type theory. The original motivation for NaDSyL is maintained,
namely to explore unlimited abstraction within a logic in which consistency is
maintained by carefully distinguihing between use and mention, and in which
all sentences are grounded. HSL is an intuitionist version of CSL with semantics
motivated by Kripke’s semantics for first order logic.

The relevence of HSL to the motivation of this paper expressed in its title is
in the following quote from pages 30 and 31 of Smolin’s [19]: “In the history of
Physics it has often happened that by the time the physicists had been able to
understand the need for a new mathematics, they found that the mathemati-
cians had got there first and had already invented it. ... The mathematicians, it
seems, were not aware that they were inventing the right form of logic for cos-
mology, so they called it other names. In its first forms it was called ‘intuitionist’
logic. More sophisticated versions which have been studied more recently are
known as ‘topos theory’.”

It appears to be Kripke’s multiple world models of intuitionist logic [13] that
might make intuitionist logic and its algebraic derivatives useful in quantum
cosmology. That HSL might be useful has yet to be explored. That it might
be of some value depends not only on its Kripke semantics, but also on the
nominalist motivation for the distinction between use and mention that ensures
its consistency. Indeed the disputes between Einstein’s ‘realism’ and quantum
theorists’ views of ‘reality’ as described in chapter 20 of Isaacson’s [12] can be
seen as arising from different views of language described by Quine in [16].

A secondary motivation for this paper is to respond to the recent paper [1]
by Jamie Andrews. Andrews defined a logic by simplifying NaDSyL in several
ways including removing abstraction vaiables. He proved that his logic, like
NaDSyL, is consistent; but in addition that there are sentences of his logic that
are not sentences of NaDSyL. Among such sentences is one YN in which the
Y operator of Curry is used. It is shown in §3.2.2 that Andrew’s logic fails
to satisfy the criterion of all sentences being grounded, since any attempt to
provide a derivation in CSL for the sequent YN � YN cycles.

The elementary syntax for both CSL and HSL is defined in §2. The semantics
and proof theory for CSL are decribed in §3.1 and §3.2, and for HSL in §4.1
and §4.2. The proof theories of both logics are adaptions of Beth’s method of
semantic tableaux as used in [6, 7, 8, 9]; an excellent description of the method
for first order classical logic is Hodges [11]. Their consistency is proved in §3.2.2
and some examples given of significant sequents that are derivable in both both
logics. Sketches are given of the redundancy of Cut for CSL in §3.2.3 and HDL
in §4.2.4. Finally in §5 the nominalist motivation for CSL and HSL is sketched
along with its relevance for logic and the physical sciences.

2

2 Elementary Syntax

There are two novel features of the elementary syntax of CSL and HSL de-
scribed here. Although the logics have quantifiers ∃ and ∀ over all types, only
abstraction variables, used by the abstraction operator λ, appear in the logics.
Further, any higher order term in which no unspecified predicate name, called
a free predicate name, occurs is also a first order term. This feature is justified
by a careful distinction between the use and mention of predicate names. Both
features are evident in definition 4 of §2.2, and result in a third unusual feature,
namely that the syntax defining terms is not decdable, or using a commonly
used terminology, is semi-decidable.

2.1 Types

The importance of the arity of a predicate name, that is the number of its
arguments, is evident: Giving too many or too few or irrelevent arguments to
a predicte name results in a string of characters without meaning. As will be
seen, applications of the abstraction operator λ can result in terms that will
accept as arguments terms of any arity that may themselves be predicates of
any arity, resulting in the need for a more general form of arity called type.

Definition 1 Type
• 1 is the only type of objects and [] is a predicate type;
• If σ is 1 or a predicate type, and τ a predicate type, then (σ, τ) is a predicate
type.
[τ1, . . . , τk] abbreviates (τ1, . . . (τk, []) . . .). Thus if τ is [. . .]. then (σ, τ) is
abbreviated by [σ, . . .]. Further, [k] abbreviates [1, . . . , 1] where there is a total
of k, 0 ≤ k, 1’s in the sequence 1, . . . , 1.

Apart from notation and the distinction between object and predicate types,
this definition repeats the definition A.1.1 in Appenix A, Typed Lambda Cal-
culus, of Barendregt’s monograph [2]. The difference in notation reflects a dif-
ference in interpretation. The abbreviated type [τ1, . . . , τk] in the abbreviatted
Barendregt notation, is written (τ1 → . . . τk → []) where [] is the type of the
truth values. It is the type of a function with arguments the types τ1, τ2, . . . , τk,
and value of type []; that is the type of a predicate.

For example, [1,[2],1,1,1] is the type of a predicate; namely the type of a
predicate with first argument of type 1, second of type [2], and third, fourth
and fifth arguments each of type 1. That the type of the second argument is [2]
means that the second argument has arity 2 and therefore has two arguments
each of type 1. There is no limit to the depth of nesting of ’[‘ and ’]‘ allowed. For
example a type that later will be seen to be involved in inductive or recursive
definitions is [[[1], 1], 1].

The notation N :τ used throughout the paper states that N is a term with
the type τ .

Predicate and object names are fundamental ingredients of the syntax of the
logics.

3

Definition 2 Predicate and Object Names
A predicate name is any string of upper and lower case letters and numerals
beginning with any uppercase letter other than U, V,W,X, Y and Z. The set
of all such predicte names is denoted by NM. A free predicate name is any
Nm ∈ NM typed in bold, as for example Nm. The set of all such free predicte
names is denoted by FNM.

An object name is a string of any number of lower case letters and numerals
with any first letter other than u, v, w, x, y, and z. The set of all such object
names is denoted by nm. A free object name is any nm ∈ nm typed in bold, as
for example nm. The set of all such free object names is denoted by fnm.

Definition 3 Atomic and Grounded Atomic Sentences
The atomic sentences take the form Nm(tm1, . . . , tmk), where
Nm:[τ1, . . . , τk], 0 ≤ k. is a predicate name, possibly a free predicate name,
and each tmi:τi. If Nm:[k], 0 ≤ k, and is not a free predicate name, then the
atomic sentence is said to be grounded. Each tmi then may be an object name,
but not ncessarily an object name.

Grounded atomic sentences are to be understood as sentences whose truth
or falsehood can be verified directly from observation, or indirectly in terms of
predicate names that have been defined using only grounded predicate names.
An atomic sentences that is not grounded and that does not have a free predicate
name is to be understood as defined in terms of grounded atomic sentences. Free
predicate and object names are used to define the proof theory of the logics.

2.2 Terms and Their Properties

Only terms and sentences, that is terms of type [0], have been mentioned so far.
Now the next important ingrediant of the syntax, namely abstraction variables,
must be introduced. An abstraction variable is a string of lowercase letters
beginning with the letters u, v, w, x, y, z with or without numeral subscripts.
Along with the λ-abstraction operator, the logical connectives ∧, ∨, →, and ¬,
and the quantifiers ∃ and ∀ are introduced.

2.2.1 The λ Abstraction Operator

The λ operator of Church [5] has since that publication been extensively stud-
ied, for example in the already cited Barendregt monograh [2] that provides
important definitions and results for the elementary syntax of the logics.

Definition 4 Terms and their Types
Consider a string of one or more characters each of which is a name from
NM∪FNM∪nm∪ fnm, a connective, a quantifier, =, an abstraction variable,
λ, or one of the braces (and). Such a string is a term and is assigned one or
more types under the following conditions:

4

1. Names: Each predicate name of NM∪FNM is a term assigned a single
predicate type, its primary type. Each object name of nm∪fnm is a term
assigned the object type 1.
There are denumerably many names of each type.
Connectives: Each of ∧,∨ or → is a term assigned the type [[0], [0]],
and ¬ is a term assigned the type [[0]]. These are the primary types of
the connectives.
Quantifiers: Each occurrence of ∃ or ∀ is a term assigned a single type
[[τ]], the primary type of the occurrence.
Identity: Each occurrence of = is a term assigned a single type [τ, τ], the
primary type of the occurrence.
Variables: Each occurrence of a variable is a term assigned a single type
τ , the primary type of the occurrence.

2. Let F be assigned the primary type [. . .] and let each and every of the
types τ1, . . . , τk be assigned to one or more of all the free occurrences of
a variable v in F . Then (λv.F) is assigned each of the types [τi, . . .],
1 ≤ i ≤ k, each a primary type. If v has no free occurrence in F , then the
primary type [. . .] of F is the primary type of (λv.F).

3. Let the types [τi, . . .], 1 ≤ i ≤ k, be all tha primary types assigned to a
term F , and let each of τi, 1 ≤ i ≤ k, be either a primary or secondary
type of G. Then (FG) is a term of primary type [. . .].

4. Let F be a term assigned a predicate type in which no Nm ∈ FNM has
an occurrence and in which only variables assigned type 1 have a free
occurrence. Then F is also assigned the secondary type 1.

F:τ is the notation used throughout the paper to express that a specified occurrece
of the term F is assigned the type τ .

As noted in the introduction, item (4) of the definition provides the basis
for all inductive definitions in the logics. The proviso that no member of FNM
has an occurrence in F is essential for the consistency of the logics; to ignor
this proviso would be to ignore the distinction between the use and mention of
predicate names.

Examples may be useful in clarifying the effects of the last two clauses. Let
A,B:[1] with A,B /∈ FNM and consider the lambda terms (λu.[A(u) ∨ B(u)])
and (λv.v(v)), where in the latter the first occurrence of v:[1] and the second
v:1. Then
a) ∃(λu.[A(u) ∨B(u)]):[] and
b) (λv.v(v))(λu.[A(u) ∨B(u)]):[]
since (λu.[A(u) ∨ B(u)]):1 is a secondary type assignment, it is not needed for
(a) but is for (b).

The notation [G/v]F denotes the string of characters that results from re-
placing each free occurrence of a variable v in a term F by a a term G. It
is assumed that all the complications of such substitutions involving free and

5

bound variables are understood by the reader; [2] can be consulted for details.
The notation is only used in the following circumstances: Each free occurrence
of the variable v in F has been assigned a type that has also been assigned to
G. Note that the type of [G/v]F is the type of F since each new occurrence of
G in [G/v]F takes the type of the free occurrence of v it replaces.

Changes of bound variables do not affect the meaning of terms. To ensure
orderly changes of bound variables, variables are linearly ordered and tuples of
variables are ordered accordingly.

Definition 5 λ-reduction
The λ-reduction relation ❀ between occurrences of terms is defined:

1. ((λv.F)G) ❀ [G/v]F ;

2. (λv.(Fv)) ❀ F and (λv.F) ❀ F , provided v has no free occurrence in F ;

3. F ❀ F ′, provided F ′ is obtained from F by changes of bound variables
that result in the tuple of bound variables in order of appearance in F ′

preceding the corresponding tuple of F .

4. (λv.G) ❀ (λv.G′), provided G ❀ G′;

5. (FG) ❀ (F ′G), provided F ❀ F ′; and (FG) ❀ (FG′), provided G ❀ G′;

6. Let F ❀ G for terms F and G of primary type τ , and let them satisfy
item 4 of definition 4 of Terms and their Types. Then also F ❀ G when
they have the secondary type 1.

7. F ❀ G and G ❀ H ⇒ F ❀ H.

The reductions in items (1), (2) and (3) are related to conversions sometimes
called respectively as β, ξ and α.

Definition 6 Reducible, Irreducible, and Grounded Terms
A term F is reducible if for some term F ′, F ❀ F ′; otherwise it is irreducible.
A term F is grounded in an irreducible term F0 if F ❀ F0.

The common terminology of normal form is not used to guard against mis-
understandings.

That each term has a unique term in which it is grounded is assured by
definition 5 since item (3) ensures an orderly change of bound variables. Jus-
tification for this conclusion can be found in Barendregt’s monograph [2]. Al-
though a term may not have more than one type in Barendregt’s typed lambda
calculus, this novelty does not change in any substantial way the results. cited
there.

Lemma 1 Unique Grounding
For each term F there is an irreducible term F0, necessarily unique, for which
F ❀ F0.

6

2.2.2 Closed Terms

Closed terms, that is terms in which no variable has a free occurrence, are the
only terms of immediate interest for the semantics and proof theories of CSL
and HSL. For that reason for the remainder of the paper by a term is to be
understood always to mean a closed term, unless a stement to the contrary
appears. A term F that is not closed and contains free occurrences of a variable
v is always prefixed with a substitution operator [P/v] so that [P/v]F , that
results from F by replaceing each free occurrence of v in F , is a closed term.

This notation is used, for example, in the statement of the ±λ rules of CSL
and HSL; see §3.2.1. The rules are justified by definition 5.

2.3 Intensional Identity

From the name of a predicate the meaning, that is the intension of the predi-
cate can be determined. To use an example of Frege, the name ‘The morning
star’ is the name given to the planet Mars when seen in the morning and ‘The
evening star’ when it is seen in the evening. The names of the two predicates
are distinct although they have the same extension, namely the planet Mars;
indeed that these distinct names denotes a single planet was a significant as-
tronomical discovery. Conversely the several occurrences of a single predicate
name in different contexts are all intended to denote the same predicate; in-
deed it is difficult to imagine how some facts might be communicated without
this assumption. Unlike conventional predicate logics, CSL and HSL have the
means for expressing identity between two predicate names through the use of
the identity predicate = of type [1, 1] as well as the intensional identity of two
predicate names through the use of the identity predicate = of type [τ, τ]. The
relationship between these two identities is expressed in the ±Int rules of CSL
and HSL; see §3.2.1.

2.4 Grounded Sentences

Since a sentence is a term of type [0], it follows from lemma 1 that for every
sentence M there is an irreducible sentence M0 for which M ❀ M0.

Consider now an irreducible sentence (. . . (PQ1) . . . Qk), 0 ≤ k where P /∈
FNM, and P is not (P1P2) for some P1 and P2. Necessarily P cannot be a
λ-term, and must therefore be one of the following:
1. P ∈ NM of some predicate type [. . .].
2. P one of ∧, ∨ or → of type [[0], [0]], or ¬ of type [[0]].
3. P one of ∃ or ∀ of type [[τ]] for some τ .
4. P is = of type [τ, τ] for some τ .

Consider these case in turn:
1. The sentence is atomic; it is also grounded if P :[k] is grounded. If it is

not grounded, then the assumption has been made that P is definable in terms
of grounded predicate names of type [k], 0 ≤ k, in which case the sentence may
become reducible when the definition of P replaces P .

7

2. In this case k is 2 or 1, and the truth or falsehood of the sentence
requires considering the truth or falsehood of component sentences with fewer
connectives.

3. In this case k is 1, and the truth or falsehood of the sentence depends
upon the truth or falsehood of sentences (Q1Tm), where Tm : τ and no free
names occur within it.

4. In this case k is 2 and the sentence is ((= Q1)Q2), Q1, Q2:τ . The sentence
expresses the intensional identity of the two predicates as discussed in §2.3.

2.5 Conventional Notation

Throughout the paper a conventional logic notations will be substituted for the
defined notations when greater clarityof structure is achieved. For example the
defined notaion (∃F) would be written ∃x.F (x) where if F : [τ] then x is an
abstraction variable of type τ .

2.5.1 Functional Notation

The syntax for CSL and HSL provides a notation for functions with values that
are predicate types. For example, consider functions with arguments of type
σ1, . . . , σk and a value of type [τ]. Such a function has a type [σ1, . . . , σk, τ]; for
when argument of type σ1, . . . , σk are applied to a predicate of type [σ1, . . . , σ,τ],
a predicate of type [τ] results. But without the novel feature of the syntax
of terms in item 4 of definition 4, which allows some higher order terms to
have a secondary type 1, a notation would not be available for functions with
values of type 1. An example that will be encountered again in §?? is the
zero and successor function for the natural numbers. The zero is defined to
be (λu.¬u = u) and successor (λu, v.u = v), where u, v:1. The primary types
of these terms are (λu.¬u = u) : [1], and (λu, v.u = v) : [1, 1], but since also
(λu.¬u = u):1, it follows that (λu, v.u = v)(λu.¬u = u):[1] and that therefore the
numeral one can be defined to be (λu, v.u = v)(λu.¬u = u):1. This functional
notation provides the means to give a recursive definition for the predicate Num
of natural numbers.

8

3 CSL

The elementary syntax of CSL has been described in §2. The semantics of CSL
is described in §3.1 and the proof theory, a proof of its consistency, and a sketch
of its completenes is given in §3.2. Some definitions of terms relating to natural
numbers and recursion theory are given in §3.3 along with a proof of why the
logic of Andrews’ paper [1] cannot substitute for CSL.

3.1 CSL Semantics

The values that may be assigned to the terms of CSL are members of the
following domains, defined inductively on definition 1 of type.

Definition 7 The Domains Dτ

1. D1 is the set of irreducible terms of type 1; D[] is the set {+,−}.
Recall that by the meaning given to ‘term’ in §2.2.2, terms are without free
variables, and that by item 4 of definition 4, no member of FNM occurs in a
term of type 1.
2. Assume Dσ and Dτ are defined. D(σ,τ) is the set of all total functions with
arguments from Dσ and single-values from Dτ .

Definition 8 Valuations
A valuation is a function Φ(F, τ) defined for arguments F and τ for which
F :τ and with a single value in Dτ . A given valuation Φ satisfies the following
conditions defined inductively on definition 4 of terms:

1. Names: F ∈ NM ∪ FNM⇒ Φ(F, τ) ∈ Dτ ;
F ∈ nm ∪ fnm⇒ Φ(F, 1) is F .
Connectives: Φ(∧, [[0], [0]]), Φ(∨, [[0], [0]]) and Φ(→, [[0], [0]]) are respec-
tively:
{(+,+.+), (+,−,−), (−,+,−), (−,−,−)};
{(+,+.+), (+,−,+), (−,+,+), (−,−,−)}; and
{(+,+.+), (+,−,−), (−,+,+), (−,−,+)}.
Φ(¬, [[0]]) is {(−.+), (+,−)}.
Quantifiers: Φ(∃, [[τ]]) and Φ(∀, [[τ]]) are respectively
{(D′,+)||D′ ⊆ Dτ , D

′not empty} ∪ {(D′,−)||D′empty}; and
{(Dτ ,+)} ∪ {(D′,−)||D′ ⊂ Dτ D

′not Dτ}.
Identity: Φ(=, [τ, τ]) is {(P,Q,+)||Φ(P, τ) is Φ(Q, τ)}∪
{(P,Q,−)||Φ(P, τ) is not Φ(Q, τ)}.
Variables: Φ(v, τ) ∈ Dτ .

2. Let F : [. . .], and let each and every of the free occurrences of v in F
be assigned one of the types τ1. . . . , τk. Then for each i, 1 ≤ i ≤ k,
Φ((λv.F), [τi, . . .]) is (Φ(v, τi),Φ(F, [. . .]).
Should v:τ have no free occurrence in F , then Φ((λv.F), [τ, . . .]) is Φ(F, [. . .]).

3. Consider the case (FG):[. . .]. There are two subcases to consider, when
F is one of the terms of item 1 of definition 4, and when it is a λ-term of
item 2. Consider these cases in turn.

9

In the first case F:[τ, . . .] and G:τ for some type τ . It may be assumed that
Φ(F, [τ, . . .]) ∈ D[τ,...] and Φ(G, τ) ∈ Dτ , where by definition 7, D[τ,...] is
the set of total single-valued functions with arguments from Dτ and values
from D[...]. Then Φ((FG), [. . .]) is the y ∈ D[...] for which (Φ(G, τ), y) ∈
D[τ,...].

Consider now the second case where F is (λv.H). Let the types [τi, . . .],
1 ≤ i ≤ k, be all the primary types assigned to H, and let each of τi, 1 ≤
i ≤ k, be either a primary or secondary type of G. Then Φ(((λv.H)G), [. . .])
is Φ(H, [. . .]), where the value Φ(v, τi) of a free occurrence of v in H of
type τi is Φ(G, τi).

4. Let F be a term assigned a predicate type in which no Nm ∈ FNM has
an occurrence and in which v1, . . . , vk:1 are the only variables with a free
occurrence in F . Then Φ(F, 1) is the F0 ∈ D1 for which
[Φ(v1, 1)/v1] . . . [Φ(vk, 1)/vk]F ❀ F0.

3.1.1 Satisfaction and Validity of Sequents

A sequent Γ � Θ consists of finite sets Γ and Θ of sentences of CSL and HSL of
which at most one may be empty. Given a valuation Φ for CSL, the sequent is
said to be satisfied by Φ if for some M ∈ Γ, Φ(M, [0]) is − or for some N ∈ Γ,
Φ(N, [0]) is +. The sequent is said to be valid if it is satisfied by every valuation.
A valuation Φ is a counter-example for the sequent if for all M ∈ Γ, Φ(M, [0])
is + and for all N ∈ Γ, Φ(N, [0]) is −. The proof theories for both CSL and
HSL are designed to seek a countr-example for a given sequent; if the search
for a countr-example can be sown to lead to a contradiction, then the sequent
is derivable in the logic. This style of proof theory was first described by Beth
in [3] and [4] for first order classical and intuitionist logics and recently more
extensively for the classical logic by Hodges in [11].

3.2 CSL Proof Theory

The rules of deduction for both CSL and HSL are described next. The necessary
restrictions on the rules for HSL are described in definition 14 in §4.2, and they
prevent any of these rules being defined in terms of others, unlike CSL. In these
rules each of M,N,P,Q is a closed term with M,N:[0]. F :[0] is a term in which
only a single variable has a free occurrence.

3.2.1 Rules of Deduction

+∧ +[M ∧N] +[M ∧N] −∧ −[M ∧N]

+M +N −M −N

+∨ +[M ∨N] −∨ −[M ∨N] −[M ∨N]

+M +N −M −N

10

+→ +[M → N] −→ −[M → N] −[M → N]

−M +N +M −N

+¬ +¬M −¬ −¬M

−M +M

+∃ +∃P −∃ −∃P

+P (nm) −P (Q)
new nm ∈ FNM ∪ nm

+∀ +∀P −∀ −∀P

+P (Q) −P (nm)
new nm ∈ FNM ∪ nm

+λ +[P/v]F −λ −[P/v]F

+[Q/v]F −[Q/v]F
P ❀ Q

+ = +P = Q +P = Q

+∀x.[x(P)→ x(Q)] +∀x.[x(Q)→ x(P)]

− = −P = Q

−∀x.[x(P)→ x(Q)] −∀x.[x(Q)→ x(P)]

+Int +P =1 Q −Int −P =1 Q

+P =τ Q −P =τ Q

Cut
+M −M

Note that the ±Int rules are the only ones to change a type from premiss
to conclusion.

3.2.2 CSL Derivations

The rules of deduction of CSL can be used to systematicaly search for a counter-
example for a given sequent. Here the systematic search is described as the

11

construction of trees with nodes that are signed sentences of CSL. All the rules
of deduction other than Cut may be used.

Definition 9 Search Tree for a Sequent

1. A search tree for a sequent Γ � Θ is a set of branches, each of which is
a sequence of signed sentences the initial members of which are +M for
each M ∈ Γ and −N for each N ∈ Θ.

2. Each member following the initial members of a branch is a single conclu-
sion of one of the rules of deduction with premiss a previous member of
the branch.

3. A premiss of the rules +∧,−∨,− → and + =, each with two possible
conclusions, may be used twice in a given branch as a premiss, once for
each conclusion.

4. An application of the rules −∧,+∨,+ → and − =, each with alternative
conclusions, results in a splitting of the branch of the premiss of the rule
into two branches with identical members preceding the conclusions.

5. The rules +∃ and −∀ may be used only once with the same premiss and
add +P (a), respectively −P (a), to the branch; here a ∈ FNM∪fnm, with
type determined by the quantifier, has no previous occurrece in the branch.

6. The rules −∃ and +∀ may be used any number of times with the same pre-
miss but only once with the same conclusion −P (Q), respectively +P (Q);
here ∃,∀:[[τ]], P:[τ], and Q:τ .

7. A branch is closed if both +M and −M are members for some sentence
M ; otherwise it is said to be open. A search tree is closed if each of its
branches is closed; otherwise it is said to be open.

Because being a sentence of CSL, or HSL, is not decidable, item (7) in
allowing a branch to be closed by signed sentences +M and −M assumes that
the sentencehood of M has been confirmed. An alternative would be to require
M to be atomic, since being an atomic sentence is decidable and it is easily
established that the sequent M � M is CSL derivable for every sentence M of
CSL.

A sequent is derivable if a search tree constructed from it is closed. A proof
of the following lemma is sketched with final details left to the reader.

Lemma 2 Every Derivable Sequent is Valid

proof
Let Γ � Θ be a derivable sequent and Φ a valuation. It is necessary to prove
that every such sequent is satisfied by every valuation. A proof by induction on
the number n of rules applied in the derivation of the sequent will be sketched.

Let n be 0 so that Γ and Θ have identical membership; the sequent is nec-
essarily satisfied by any Φ.

12

Assume that all sequents derivable with n or fewer applications is valid.
Cnsider a sequent with a derivation with n + 1 applications and consider the
first rule applied in its derivation. Proofs for only two of the possible first rules
applied will be given since the proofs for the other cases take a similar form.

Let the first rule applied be the +Int rule. Then it may be assumed that the
sequent takes the form Γ, P =1 Q � Θ where P,Q:1 since P,Q:τ and no member
of FNM occurs in either P or Q. It follows that the sequent Γ, P =τ Q � Θ has
a derivation with n applications and is satisfied by every Φ. If Γ, P =1 Q � Θ
is not also valid then there exists a Φ that does not satisfy it. But this is only
possible if Φ(P =1 Q, [0]) is + while Φ(P =τ Q, [0]) is −.

From the Identity case of item 1 of the definition 8 of valuations it follows
that Φ(P =1 Q, [0]) is + if and only if Φ(P, 1) is Φ(Q, 1); that is, for some
irreducible R0 :1, P ❀ R0 and Q ❀ R0. Hence by item 6 of definition 5 of
❀, P ❀ R0 and Q ❀ R0 when P,Q,R0 :τ , and therefore again by item 1 of
definition 8 it follows that Φ(P =τ Q, [0]) is +, contrdicting the previous value.

Consider one more case, when the first rule used in the derivation of the
sequent is −∀. Then the sequent takes the form Γ � Θ,∀P , where P :[τ], and
the sequent Γ � Θ, P (nm) is derivable and valid, where nm ∈ FNM does not
occur in any sentence of Γ � Θ,∀P . It follows that each sequent Γ � Θ, P (Q)
for which Q ∈ Dτ is also derivable and valid.

Assume that Γ � Θ,∀P is not valid. It follows that for some Φ, Φ(∀P, [0]) is−
while Φ(P (Q), [0]) is + for every Q ∈ Dτ . But that contradicts the Quantifiers
case of item 1 of the definition 8 of valuations.
qed

3.2.3 CSL Completeness

The converse of lemma 2 is completeness. Clearly completeness with respect to
the domains of definition 7 cannot be proved since there are only denumerably
many derivable sequents while the domains D1 and D[] are finite and all oth-
ers are non-denumerable; the incompleness theorem of Gödel [21] describes a
method of constructing such a sequent from any fully formal theory of natural
numbers. Completeness has to be proved with repect to some proper subdo-
mains of the defined domains. Henkin described how such domains could be
defined for higher orders predicate logic in [10]. These results can be adapted
for CSL. But now a proof of completeness for a logic like CSL proceeds by a
method described by Prawitz in [14] for second order logic. An open saturated
branch of a search tree for a given underivable sequent is first constructed. Here
by a saturated branch is meant one in which every possible conclusion of a rule
with premiss on the branch appears on the branch. A partial valuation that is a
counter-example for the sequent is defined from the branch. Then a transfinite
process completes the valuation while maintaining it as a counter-example for
the given underivable sequent. The domains of this constructed valuation are
generally proper subsets of the domains of definition 7. Thus a completeness
proof obtained in this way is esentially circular: a logic such as CSL or HSL is
compete with respect to the predicates that can be defined within the logic by a

13

transfinite process. Since a proof of completeness via a proof of the redundancy
of Cut for CSL, and later HSL, can be adapted from the proof for ITT given in
[9], the proofs are left to the reader.

3.3 Some Derivable Sequents

Here a number of derivable sequents will be stated to illustrat the strength
of CSL; in §4 these sequents will also be seen to be derivable in HSL. nnot
substitute for CSL. As noted in §2.5 a standard notation is generally employed.

Definition 10 Some Abbreviating Definitions.
0

df
= (λu.¬u = u). The empty predicate of arity 1, nuweral 0; type [1].

S
df
= (λu, v.u = v). The successor predicate; type [1, 1].

RN
df
= (λz, x.[x = 0∨∃u.[z(u)∧x = S(u)]]).Recursion generator for the sequence

of natural numbers; type [[1], 1].

Lt
df
= (λwg, u.∀z.[∀x.[wg(z, x) → z(x)] → z(u)]]). Least Predicate Operator;

type [[[1], 1], 1].

Num
df
= (λu.Lt(RN, u)). Natural Number; type [1].

Gt
df
= (λwg, u.∃z.[∀x.[z(x) → wg(z, x)] ∧ z(u)]]). Greatest Predicate Operator;

type [[[1], 1], 1].

Un
df
= (λu.u = u). The universal predicate of arity 1; type [1].

Rus
df
= (λw.¬w(w)). The Russell set; type [[1]] and [1].

V
df
= (λw, v.w(v(v))). Andrews’ V.

Y
df
= (λw.(V(w)V(w)). Andrews’ Y combinator.

N
df
= (λu, x.[x = 0 ∨ ∃y.[x = S(y) ∧ u(y)]). Andrews’ N.

Examples of derivable sequents of CSL that make use of these definitions
are:
1. � ∀x, y.[S(x) = S(y)→ x = y]
2. � ∀x.¬S(x) = 0
3. � Num(0)
4. � ∀x.[Num(x)→ Num(S(x))]
5. � ∀w.[w(0) ∧ ∀x.[w(x)→ w(S(x))]→ ∀x.[Num(x)→ w(x)]]
6. � Rus(Emp)
7. � ¬Rus(Un)

The sequents (1-5) are the Peano’s axioms for the natural numbers, while
(6) and (7) illustrate how the unusual syntax of CSL and HSL can accomodate
sentences involving paradoxical predicates like Russell’s set. Derivations of these
sequents that can be adapted for CSL are given in [9]. However to illustrate one
important role for the unusual rules ±Int, a derivation of (1) is given with the
types of occurrences of = made explicit.

14

−∀x, y.[S(x) =1 S(y)→ x =1 y]
−S(a) =1 S(b)→ a =1 b; a,b ∈ fnm
+S(a) =1 S(b)
−a =1 b
+S(a) =[1] S(b); +Int
+∀w.[w(S(b))→ w(S(a))]; + =
+[(λz.(zb))(S(b))→ (λz.(zb))(S(a))]; [(λz.(zb))/w]
+[((S(b))b)→ (λz.(zb))(S(a))]; +λ
+[((S(b))b)→ ((S(a)b))]; +λ
+[(((λu, v.u = v)(b))b)→ (((λu, v.u = v)(a)b))]; def S
+[b =1 b→ a =1 b]; +λ

−b =1 b +a =1 b
−∀w.[w(b)→ w(b)]
−[C(b)→ C(b)]; C ∈ FNM
+C(b)
−C(b)

In §4.2 of [1], Andrews suggests that Y(N) can play the role in his logic that
Num plays in CSL, namely as a predicate name for the natural numbers, or
more precisely, a counter set for the natural numbers to use the terminology
of [15]. Why Y(N) cannot take on that role in CSL is demonstrated by any
attempt to provide a derivation for the following sequent in which a ∈ fnm:
A) Y(N)(a) � Y(N)(a)
Using the β−reduction of Y(N) given in [1], to provide a derivation for (A) it
is sufficient to provide a derivation for
B) (λx.[x = 0 ∨ ∃y.[x = S(y) ∧Y(N)(y)])(a) �

(λx.[x = 0 ∨ ∃y.[x = S(y) ∧Y(N)(y)])(a)
A derivation of (B) would have to include all of the following:
+(λx.[x = 0 ∨ ∃y.[x = S(y) ∧Y(N)(y)]])(a)
−(λx.[x = 0 ∨ ∃y.[x = S(y) ∧Y(N)(y)]])(a)
+[a = 0 ∨ ∃y.[a = S(y) ∧Y(N)(y)]]
−[a = 0 ∨ ∃y.[a = S(y) ∧Y(N)(y)]]
+∃y.[a = S(y) ∧Y(N)(y)]
−∃y.[a = S(y) ∧Y(N)(y)]
+[a = S(b) ∧Y(N)(b)],b ∈ nm
−[a = S(b) ∧Y(N)(b)]
+Y(N)(b)
−Y(N)(b)

Thus a derivation of (A) requires a derivation of
C) Y(N)(b) � Y(N)(b)
Any attempted derivation of (A) cycles, just as does any attempted derivation
of Rus(Rus) � Rus(Rus)!! The string Y(N(a) is an example of what can be
called ungrounded abstractions and are properly excluded from the terms of

15

CSL.
It is possible that Y like Russ is definable in CSL and that like 0 and Un for

Russ one or more terms P can be defined for which (YP) � (YP) is a derivable
sequent.

4 HSL

The primary purpose of this section is to adapt the Kripke semantics for first
order intuitionist logic [13] for the higher order intuitionist logic HSL with the
same elementary syntax as CSL as given in §2. A secondary purpose is then to
explore how this semantics might provide insights into the foundations of experi-
ment based scientific theories in general and quantum mechanics in particular as
suggested by Lee Smolin in [19]. This is of course highly speculative. A sounder
purpose is to provide a foundation for higher order intuitionist mathematics.

4.1 Kripke Semantics

For CSL a valuation Φ assigned either + ‘true’ or − ‘false’ to each sentence. For
HSL a Kripke model does the same but not in the same explicit manner, since in
Kripke models the fact that no explicit sign is attached to a sentence is to be the
equivalent of assigning it a − sign. Assigning a + sign to a sentence in Kripke
semantics is to be understood as asserting that the truth of the sentence has
been verified, not just that the sentence is assumed to be ‘true’. Since assigning
a − sign to a sentence M is to be understood as asserting that M has not been
verified, a wide range of meanings can follow from −M . It could mean that M
has been verified to be false, in which case +¬M can be asserted, but it could
also mean that currently nothing is known about the truth or falsehood of M .

A Kripke style semantics is described here for HSL in a form much influenced
by §5 of volume I of Troelstra and van Dalen’s [20]. The concept of a world in
Kripke semantics is identified here with a recording of the observations made in
the world in the form of grounded atomic sentences. Observations made in one
world may differ from those made in a different world. In a successor world to
a given world, additional obervations may be recorded, but previously recorded
observtions are always confirmed. The additional observations may, of course,
involve objects not observed in a previous world; the domain of observables,
which is always a subset of the type 1 objects, may enlarge in a successor world.
The grounded atomic sentences may of course reference the observer who has
recorder the observation - observers may be objects in a world.

Definition 11 Kripke Models of HSL
A Kripke model KM for HSL is a quadruple (W,�,B,Tup), where:

1. W is a non-empty set of worlds w partially ordered by the relation � with
least element the world w0.

16

2. B, the basis of the model, is a set of sets Bk consisting of a set of subsets
Tupk of Dk

1 , 0 ≤ k, that includes the empty subset { }; B0 is therefore
{{ }, ()}, where () is the empty tuple.

3. Tup is a function with arguments w ∈W and Nm ∈ NMk, 0 ≤ k, Nm /∈
FNMk, with values Tup(w,Nm) ∈ Bk satisfying:
w1 � w2 ⇒ Tup(w1, Nm) ⊆ Tup(w2, Nm).

The grounded atomic sentences Nm(tm1, . . . , tmk), (tm1, . . . , tmk) ∈ TUP(w,Nm)),
w ∈W, records all observations currently made and expected to be made in w0

and all its successors w. Note that the definition of the sets of subsets Bk in
clause (2) together with its use in clause (3) allows for new objects of type 1 to
be observed in a successor world. The logical consequences of these observations
is defined next in terms of signed sentences.

Definition 12 The Forcing Relation �.
The forcing relation KM � ±M between a model KM specified by (W,�
,B,Tup), and signed sentences ±M , holds if w0 � ±M , where w0 is the least
world of W. The relation � for KM is defined as the least relation between
worlds w ∈ W and signed sentences satisfying the conditions stated next in
three groups, Current world, Some successor world, and All successor worlds.
Each world of the model must be considered in turn as the Current world and
must satisfy the specified conditions, and must further have successor worlds with
forced signed sentences as required by Some successor world, and All successor
worlds.

Current world w.

±A: Let A be a grounded atomic sentence Nm(tm1, . . . , tmk). Then:
(tm1, . . . , tmk) ∈ TUP(w,Nm)⇒ w � +A;
(tm1, . . . , tmk) /∈ TUP(w,Nm)⇒ w � −A.

±∧: w � ±M and, resp. or, w � ±N ⇒ w � ±[M ∧N].

±∨: w � ±M or, resp. and, w � ±N ⇒ w � ±[M ∨N].

±∃: P:[τ].
w � ±P (Q) for some, resp. for no Q:τ ⇒ w � ±∃P .

± =: For some R, resp. for no R, P ❀ R and Q ❀ R⇒ ±P = Q.

±λ: P ❀ Q and w � ±[P/v]F ⇒ w � ±[Q/v]F .

Some successor world. For some w′, w ❁ w′:

−¬: w′ � +M ⇒ w � −¬M .

− →: w′ � +M,w′ � −N ⇒ w � −[M → N].

−∀: P:[τ].
w′ � −P (Q) for some Q:τ ⇒ w � −∀P .

17

All successor worlds. For all w′, w � w′:

+→: w′ � −M or w′ � +N ⇒ w � +[M → N].

+¬: w′ � −M ⇒ w � +¬M .

+∀: P:[τ].
w′ � +P (Q) for all Q:τ ⇒ w � +∀P .

4.2 HSL Proof Theory

It is important to recall that an atomic sentence A recorded as −A in a world
may in a later world be changed to a recording of +A; this is a consequence of
item 3 of definition 11. It follows from definition 12 that the same holds for any
sentence M ; it is only the sentences recorded as +M that are never changed. It
is this fact that permits the same rules of deduction described for CSL in §3.2
to have different conclusions for HSL.

The proof theory of HSL, like that of CSL, is motivated by a search for a
counter-example.

Definition 13 Sequents, their Satisfactiom and Counter-Examples
Let Γ � Θ be a sequent and let KM be a model. KM satisfies Γ � Θ if for some
M ∈ Γ,KM � −M , or for some N ∈ Θ,KM � +N .
KM is a counter-example for Γ � Θ if for each M ∈ Γ,KM � +M , and each
N ∈ Θ,KM � −N .

For a given sequent there may be both a model that satisfies it as well as
a model that is a counter-example. But these are not the sequents of interest,
rather it is the sequents without a counter-example. A process will be described
for determining of a given sequent whether it has a counter-example. The
process makes use of the rules of deduction of the logic CSL described in §3.2.1
that, with special restrictions, are the rules of deduction for HSL. They can be
seen to be a more formal statement of the Kripke semantics described in §4.1.

4.2.1 Examples

Some examples may be useful in connecting the semantic rules with derivations
and counter-examples. The first example compares a derivation of the sequent
� ¬¬[A ∨ ¬A] in CSL with a derivation in HSL.

18

CSL HSL
−¬¬[A ∨ ¬A] −¬¬[A ∨ ¬A]
+¬[A ∨ ¬A] +¬[A ∨ ¬A]
−[A ∨ ¬A] −[A ∨ ¬A]
−A −¬A
−¬A +A
+A −[A ∨ ¬A]

−A

Note that it is necessary to repeat the appearance of −[A∨¬A] in the HSL
derivation.

The next example, ∀x.[P (x)∨M] � [∀x.P (x)∨M], taken from [13], illustrates
how a search for a counter-example can lead to the construction of a counter-
example. Two different ways of constructing the same counter-example are
described in two different ways of dealing with a restriction on the use of the
−∀ rule described later in §4.2.2.

+∀x.[P (x) ∨M] +∀x.[P (x) ∨M]
−[∀x.P (x) ∨M] −[∀x.P (x) ∨M]
+[P (a) ∨M] −∀x.P (x) · · · · −M

−P (b) +[P (a) ∨M]
+P (a) +M +[P (b) ∨M]
−∀x.P (x) −M +P (a) +M
−P (b) +P (b) +M
+[P (b) ∨M]

+P (b) +M

There is a single open branch with atomic members +P (a), −P (b), +M in
the tree on the left. In the pair of trees on the right there is an open branch
in each, with atomic members −P (b), +M in the first open branch and −M ,
P (a) in the second. Since the absence of a sentence is to be understood in the
same way as its presence with a − sign, these two structures define the same
counter-example.

The counter-example KM defined for this example has two worlds w0 with
members {−M,+P (a)}, and w1 with members {+P (a),−P (b),+M}. The do-
main of w0 is {a} and that of w1 is {a,b}. The justification for concluding that
KM provides a counter-example is given next.

w0 � +P (a) w1 � −P (b)
w0 � +[P (a) ∨M] w0 � −∀x.P (x)
w1 � +M w0 � −M
w1 � +[P (b) ∨M] w0 � −[∀x.P (x) ∨M]

19

w0 � +∀x.[P (x) ∨M]

4.2.2 Search Trees for HSL

The definition of a search tree for a given sequent for HSL differs from the
definition for CSL first in the most obvious way of requiring the full range
of rules for the connectives and quantifiers, More important differences are in
restrictions on the applications of the rules −¬, − → and −∀, arising from the
fact that these rules apply in a possible successor world in which a −M in a
previous world could become +M . The final difference is in a subtle change in
the definition of closed branch. These differences are made explicit in the next
definition.

Definition 14 Search Tree for a Sequent

1. A search tree for a sequent Γ � Θ is a set of branches, each of which is
a sequence of signed sentences the initial members of which are +M for
each M ∈ Γ and −N for each N ∈ Θ.

2. Each member following the initial members of a branch is a single conclu-
sion of one of the rules of deduction with premiss a previous member of the
branch that has remained current on the branch. A signed sentence +M
always remains current on a branch. A signed sentence −M is current
on a branch provided no conclusion of one of the rules −¬, − → and −∀
follows it on the branch. For example, consider
−[∀x, P (x) ∨M]
−M
−∀x.P (x)
−P (b)
The only member of this branch that is current is the last, because it is a
conclusion of the −∀ rule; −M is no longer current since +M may hold
in a successor to the world of −M . That is the reason for the treatment
of −[∀x, P (x) ∨M] in the example given in §4.2.1.

3. A current premiss of one of the rules −∨, +∧, − → and + = has two
possible conclusions; either one or both of which may be added to the
branch provided that the premiss remains current for the second coclusion.
For the −∨ rule an alternative is to duplicate the existing tree and add
one of the two conclusions to each tree. An example is given in §4.2.1.

4. A current premiss of one of the rules +∨, −∧, + → and − = has two
alternative conclusions. An application of one of these rules results in a
splitting of the branch into two branches with identical members preceeding
the conclusions.

5. A current premiss of one of the rules +∃ and −∀ has a single conclusion
+P (nm), respectively −P (nm), on the branch; here nm ∈ FNM ∪ fnm

20

has no previous occurrece in the branch, and has its type determined by
P .

6. A current premiss of one of the rules −∃ and +∀ may have any number of
conclusions. Each conclusion has the form −P (tm), respectively +P (tm),
where tm has its type determined by P .

7. A branch is closed if +M and a current −M are both members for some
sentence M ; otherwise it is said to be open. A search tree is closed if each
of its branches is closed; otherwise it is said to be open.

Because of the alternative for −∨ in item (3), more than one search tree
may be constructed for a given sequent. However only a single closed tree need
be found to establish that the sequent is derivable in HSL, although an open
branch from each of the open search trees is needed to construct a Kripke model
that is a counter-example for it.

The comment concerning item (7) of definition 9 for CSL search trees is
relevant here: Being a sentence of HSL, or CSL, is not decidable; allowing a
branch to be closed by +M and a current −M assumes that the sentencehood
of M has been confirmed. An alternative would be to require M to be atomic,
since being an atomic sentence is decidable and it is easily established that the
sequent M �M is HSL derivable for every sentence M of HSL.

Definition 15 HSL Derivations
An HSL derivation for a sequent is a closed HSL search tree for the sequent.

Since every derivable sequent of HSL is a derivable sequent of CSL, lemma 2
ensures the consistency of HSL as well as of CSL.

4.2.3 Some HSL Derivations

The first five examples given in §3.3 of sequents derivable in CSL are repeated
here:
1. � ∀x, y.[S(x) = S(y)→ x = y]
2. � ∀x.¬S(x) = 0
3. � Num(0)
4. � ∀x.[Num(x)→ Num(S(x))]
5. � ∀w.[w(0) ∧ ∀x.[w(x)→ w(S(x))]→ ∀x.[Num(x)→ w(x)]]
They are Peano’s axioms for the natural numbers. A CSL derivation was given
for the first of these sequents; clearly that derivation is also an HSL deriva-
tion. Indeed a foundation for all of the recursion theory described in chapter 4
Recursions of [9] can be provided in HSL.

4.2.4 Completeness of HSL

It was remarked in §3.2.3 that there is a circularity implicit in the proof of
completeness of CSL, namely in as much as the logic is complete with respect
to the predicates that can be defined within the logic by a transfinite process.

21

Nevertheless, the fact that the redundancy of the Cut rule is a conseqiuence
makes the result signifigant since searching for derivations of sequents in CSL
is greatly simplified when Cut can be ignored. A similar completeness can be
proved for HSL by a similar process for HSL. Again the fact that Cut is proved
redundant is important. But for HSL there may be an additional benefit in
describing the predicates definable within HSL since it may help clarify what is
to be meant by intuitionistically defined predicates. For example, comparisons
with the constructive set theory of chapter 11 of [20] would be of great interest.

5 Logic, Mathematics and the Physical Sciences

Nominalism holds that an assertion purportdly about a universal is really an
assertion about how the name of the univeral is used. For example, the sentence
‘yellow is a colour’ is to be understood as asserting ‘Yellow is a colour word’.
The subject of the sentence is thus the word ‘yellow’ and not the colour yellow;
the sentence asserts a fact about the usage of the word in the English language.
When someone asserts ‘my car is yellow’ we learn something about the appear-
ance of his car. The use of number words is similarly interpreted. ‘John has two
legs’ gives us information about a person by using the words ‘John’ and ‘two’
while ‘John has four letters’ tells us something about the word ‘John’ by using
the word ‘four’ and mentioning the word ‘John’.

As Sellars points out in [18], a careful distinction between use and men-
tion disarms Cantor’s paradox. The consequences are of signifigance since a
recognition of the distinction requires dropping the fundamental axiom of ex-
tensionality of Cantor’s theory and replacing it with something like the rules
±Int of CSL and HSL. But really only of significance for such logics in which
something like the λ-abstraction operator is used and mathematics depending
upon it; the rest of mathematics is unaffected.

However, that is not to say that awareness of a nominalist view of language
and its dependence upon the distinction between use and mention is not impor-
tant for mathematics and science; afterall computers are consumate nominalists
and they are of increasing importane for the manipulations and calculations
of modern physicak theories. But of course it remains to be seen whether a
nominalist motivated logic like HSL based on a semantics derived from Kripke’s
semantics for first order logic can provide any insights into foundations for quan-
tum cosmology.

22

References

[1] James H. Andrews, An Untyped Higher Order Logic ith Y Operator, Jour-
nal of Symbolic Logic, (2007) 21 pages.

[2] H.P. Barendregt, The Lambda Calculus, Its Syntax and Semantics, (Studies
in Logic, The Foundations of Mathematics, Volume 103,North-Holland,
1984).

[3] E.W. Beth, Semantic entailment and formal derivability, Mededelingen
de Koninklijke Nederlandse Akademie der Wetenschappen, Afdeeling Let-
terkunde, Nieuwe Reeks, 18 (1955) 309–342.

[4] E.W. Beth, Semantic construction of intuitionistic logic, Mededelingen
de Koninklijke Nederlandse Akademie der Wetenschappen, Afdeeling Let-
terkunde, Nieuwe Reeks,19 (1956) 357–388.

[5] Alonzo Church, The Calculi of Lambda Conversion, Annals of Mathematics
Studies, Number 4, Princeton University Press, 1941.

[6] Paul C. Gilmore, Nominalism, Computers, and the Logic NaDSyL, Dept of
Computer Science Technical Report TR97-09, UBC 66 (1997) 38 pages.

[7] Paul C. Gilmore, Recursions in NaDSyL, Dept of Computer Science Tech-
nical Report TR97-18, UBC 66 (1997) 31 pages.

[8] Paul C. Gilmore, NaDSyL and some applications, Proceedings of the Kurt
Gödel Colloquim LNCS Springer 1289 (2001) 153–166.

[9] Paul C. Gilmore, Logicism renewed:Logical foundations for mathematics
and computer science (Lecture Notes in Logic 23, Association for Symbolic
Logic, 2005)

[10] Leon Henkin, Completeness in the Theory of Types, The Journal of Sym-
bolic Logic, vol. 15, 81–91, 1950.

[11] Wilfred Hodges, An introduction to elementary logic (Penguin Books,
Berlin, 1977, reprinted 1991)

[12] Walter Isaacson, Einstein, his life and universe (Simon & Schuster, 2007)

[13] Saul Kripke, Semantical analyses of intuitionistic logic I, in: J.N. Crossely
and M.A.E. Dummett, eds., Formal systems and recursive functions (
North Holland, Amsterdam, 1965) 92–130.

[14] Dag Prawitz, Completeness and Hauptsatz for Second Order Logic, Theoria,
vol. 3, 246–258, 1967.

[15] Willard Van Orman Quine, Mathematical Logic, (Harvard University Press,
Cambridge, revised edition 1951).

23

[16] Willard Van Orman Quine, from a logical point of view , (Harper & Row,
1963).

[17] Wilfred Sellars, Abstract Entities, Review of Metaphysics, vol. 16 (1963).
pp. 625–671.

[18] Wilfred Sellars, Classes as abstract entities, Review of Metaphysics, vol.
17 (1963). pp. 67–90.

[19] Lee Smolin, Three Roads to Quantum Gravity , (Basic Books, 2001).

[20] A.S. Troelstra and D. van Dalen, Constructivism in Mathematics, An In-
troduction, Volume 121 and 122 in Studies in Logic and the Foundations
of Mathematics, (North-Holland, Amsterdam, 1988).

[21] Jean van Heijenoort, From Frege to Gödel , (Harvard University Press,
1967).

24

